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Objective:  To examine set shifting in a group of women previously diagnosed with anorexia 
nervosa (AN) who are now weight-restored (AN-WR) and a control group and then apply a 
biologically-based computational model (Competition between Verbal and Implicit Systems; 
COVIS) to simulate the pattern of category learning and set shifting performances observed in the 
AN-CW group.  Method:  Nineteen AN-WR women and 35 control women (CW) were 
administered an explicit category learning task that required the initial acquisition of a rule, and 
after a certain number of trials, a set shift following a rule change. COVIS was first fit to the 
behavioral results of the controls and then parameters of the model theoretically relevant to AN 
were altered to mimic the behavioral results.  Results:  Relative to CW, the AN-WR group 
displayed steeper learning curves (i.e., hyper learning) prior to the rule shift, but greater difficulty 
in learning the new categories after the rule shift (i.e., a deficit in set shifting).  Hyper learning and 
set shifting deficits in the AN-CW group were not associated and demonstrated a different pattern 
of correlations with clinical measures.  Hyper learning in the AN-WR group was simulated by 
increasing the model parameter that represents sensitivity to negative feedback (parameter), 
whereas the deficit in set shifting was simulated by altering the parameters that represent 
changes in rule selection and flexibility (and  parameters, respectively), processes dependent 
on dopamine levels.  Conclusions:  These simulations suggest that multiple factors can impact 
category learning and set shifting in AN-WR individuals (e.g., alterations in sensitivity to negative 
feedback, rule selection deficits, and inflexibility) and provide an important starting point to further 
investigate this pervasive deficit in adult AN. 

 
A consistent finding in the neuropsychology of eating disorders is a pervasive and persistent deficit in the 

ability to shift cognitive set.  Set shifting is a cognitive concept that refers to the ability to switch tasks or change 
behavior in relation to changing rules.  Set shifting is often evaluated by having a participant learn a particular rule 
using feedback and then switching the rule covertly after a certain number of correct responses. A set shifting 
deficit is observed when the participant fails to switch to the new rule but rather persists with the previously correct 
rule.  Adult patients with Anorexia Nervosa (AN) are often impaired in making such set shifts, as demonstrated by 
a number of studies that found currently ill AN patients to be impaired on the Wisconsin Card Sorting Test 
(WCST), as well as other tasks that require set shifting (Roberts, Tchanturia, Stahl, Southgate, & Treasure, 2007; 
Roberts, Tchanturia, & Treasure, 2010; Shott et al., 2012; Steinglass, Walsh, & Stern, 2006; Tchanturia et al., 
2011).  Reduced set shifting abilities are also observed in unaffected relatives of AN patients (Roberts et al., 2010; 
Tenconi et al., 2010) and persist even after individuals with AN have restored their weight to normal levels  
(Danner et al., 2012; Roberts et al., 2010; Tchanturia, Morris, Surguladze, & Treasure, 2002; Tenconi et al., 
2010).  These findings are consistent with the clinical observation that, from a personality perspective, patients 
with AN tend to be rigid, nonflexible, harm avoidant and perfectionistic (Casper, Hedeker, & McClough, 1992; 
Merwin et al., 2011).  The combination of a rigid personality style along with cognitive set shifting deficits has 
important implications given that these behaviors could lead to the development of the disease and impact the 
potential for recovery (Merwin et al., 2011; Roberts et al., 2010).   

Despite the consistent finding of a set shifting deficit in patients with AN, few studies have offered specific 
insights into the nature and potential mechanisms of this deficit.  One recent study (Zastrow et al., 2009) using 
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fMRI attempted to examine the neurobiological basis of set shifting deficits in currently ill AN patients. These 
investigators found few differences between AN patients and controls in functional brain activation on trials when a 
set shift was required.  Thus, this study did not help elucidate the neural mechanisms that might be associated 
with set shifting deficits. 

In the present study, we take a slightly different approach to better understand the set shifting deficits 
observed in AN.  Here we examine set shifting in a group of participants who were previously diagnosed with AN 
but are now weight-restored (AN-WR) using a task on which we have recently demonstrated currently ill AN 
patients to be impaired (Shott et al., 2012).  This task is a somewhat novel, but simple, category-learning task that 
requires the learning of changing rules, thereby emphasizing set-shifting abilities. The task has a set number of 
trials both prior to and following the rule change (set-shift), thereby allowing us to examine both the speed of 
acquiring the new rule as well as the ability to shift to a new rule.  This is in contrast to other clinical measures that 
have been used in the past to examine set-shifting in AN, such as the WCST, where the number of trials prior to a 
shift requirement is not pre-determined, thereby allowing each participant to have a different amount of exposure 
to the initial rule.  We focused on weight-restored participants to examine whether set-shifting deficits persisted 
once individuals with AN no longer met criteria for the disease and to rule out the possibility that any observed 
deficits were associated with the acute stages of the disease (e.g., current malnutrition). 

To further examine the nature of any observed set shifting deficit, we next applied a computational model to 
the data of the AN-WR women and control participants to determine if the pattern of results could be simulated by 
altering key parameters in the model that represent behavioral and neural processes impacted in AN.  Many 
alternative computational models exist that could potentially be used for this purpose. However, during the past 
decade, two developments have significantly narrowed the set of viable models. First, there are now many results 
suggesting that human categorization is mediated by multiple category-learning systems (Ashby, Alfonso-Reese, 
Turken, & Waldron, 1998; Ashby & O'Brien, 2005; Erickson & Kruschke, 1998; Love, Medin, & Gureckis, 2004; 
Reber, Gitelman, Parrish, & Mesulam, 2003). Much of this evidence is in the form of behavioral dissociations 
between rule-based and information-integration category-learning tasks. In rule-based category-learning tasks, the 
categories can be separated by a rule that is easy to describe verbally and that often only depends on a single 
stimulus dimension.  One widely known example is the WCST.  In contrast, accurate performance in an 
information-integration task requires an implicit integration of two or more stimulus dimensions in a way that is 
non-verbalizable. At least 20 qualitatively different behavioral dissociations have been reported (with healthy 
young adults) between rule-based and information-integration categorization (e.g., Ashby & Maddox, 2005, 2010). 
These results have profoundly affected the categorization field, partly because no single-system theory has been 
able to account for more than one or two of these dissociations simultaneously. Second, there has been an 
explosion of new knowledge about the neural basis of category learning (Ashby & Ennis, 2006; Ashby, Noble, 
Filoteo, Waldron, & Ell, 2003; Filoteo & Maddox, 2007; Maddox & Filoteo, 2005, 2007; Nomura et al., 2007; 
Nomura & Reber, 2008; Seger, 2008; Seger & Cincotta, 2005, 2006). These new data come from a variety of 
sources, including fMRI, EEG, single-unit recordings, and behavioral studies with a variety of different 
neuropsychological patient populations. Purely cognitive models make no predictions about any of these new 
data. In fact, to date, the only theory of category learning that makes central the constraints imposed by the 
underlying neurobiology is the COVIS model (Ashby et al., 1998, Ashby, Paul, & Maddox, 2011). At the same 
time, COVIS is the only model that can account for all of the rule-based versus information-integration 
dissociations that have been reported.   

COVIS assumes that there are two neurocognitive systems that compete throughout the learning of novel 
categories – an explicit, hypothesis-testing system and an implicit, procedural-learning system. The explicit 
system uses logical reasoning and depends on working memory and executive attention and is mediated by a 
broad neural network that includes prefrontal cortex, anterior cingulate, hippocampus, and frontal-striatal circuits 
comprised by the head of the caudate.  The implicit system depends on posterior striatal regions and areas of 
premotor cortex and learns via dopamine-mediated synaptic plasticity at cortical-striatal synapses. 

The computational version of COVIS includes three main components – one that models the hypothesis-
testing system, one that models the procedural-learning system, and a third that monitors the output of the two 
systems and selects a categorization response. For a complete description of the model, see Ashby et al. (2011). 
Briefly, however, the hypothesis-testing component selects and tests explicit rules that determine category 
membership (e.g., one-dimensional rules). Computationally, this component of COVIS is implemented as a hybrid 
neural network that includes both symbolic and connectionist features. On each trial, the most salient of all 
possible rules is selected for application. Rule salience, which is updated every time feedback is provided, is a 
function of life history (initial bias), categorization accuracy (i.e., the proportion of times that positive feedback 
follows rule use), a tendency to perseverate, and a tendency to experiment with novel rules. The procedural-
learning component is implemented as a three-layer feed forward connectionist network with up to 10,000 units in 
the sensory (i.e., input) layer, one unit in the hidden layer for each contrasting category, and one unit in the motor 
(i.e., output) layer for each response alternative. Learning occurs at synapses between the input and hidden layer 
units and follows reinforcement learning rules. COVIS has recently been successfully applied to simulate the 
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pattern of cognitive deficits observed in patients with Parkinson's disease, who are well known to have lowered 
dopamine levels and also present with set shifting deficits (Hélie, Paul, & Ashby, 2012a, 2012b).  

The present study used a rule-based category learning task, in which the COVIS hypothesis-testing system is 
predicted to dominate. Therefore, this component of the model is most critical in the current application. The 
Appendix describes the COVIS hypothesis-testing system in detail, but briefly, this component of COVIS has 
several important parameters, but those most relevant to AN are the eparameter, which measures sensitivity to 
negative feedback, the � parameter, which measures the tendency to select unusual rules, and the � parameter, 
which measures the tendency to perseverate with the same rule, even in the face of negative feedback.  These 
parameters are important in the present application of COVIS to category learning and set shifting in AN for the 
following reasons. Sensitivity to negative feedback or punishment (instantiated by the eparameter) is relevant 
given past studies demonstrating that AN patients have altered reward sensitivity (Davis & Woodside, 2002; 
Keating, 2010), in general, and increased sensitivity to punishment (Harrison, O'Brien, Lopez, & Treasure, 2010; 
Jappe et al., 2011), in particular. In fact, there appears to be an abnormal response to feedback in adult and 
adolescent AN patients based on fMRI (Bischoff-Grethe, Hazeltine, Bergren, Ivry, & Grafton, 2009; Fladung et al., 
2010; Wagner et al., 2007).  

Although AN is not specifically associated with systemic dopamine loss, a number of neurotransmitter 
systems including dopamine may be disrupted in the disorder (Avena & Bocarsly, 2012). For example, it has been 
observed that recovered AN patients show aberrant DA activity (Kaye, Frank, & McConaha, 1999) and increased 
D2/D3 dopamine receptor binding (Frank et al., 2005). Wagner and colleagues (2007) further observed that the 
fMRI BOLD response in ventral striatum (heavily interconnected to the midbrain dopaminergic system) fails to 
differentiate between positive and negative feedback in recovered AN patients, but clearly differentiates between 
these different types of feedback in normal controls. This further suggests general involvement of reward 
processing and dopamine-related mechanisms in the disease; however, experimental evidence is contradictory as 
to whether these aberrations are characterized by increases or decreases in the dopamine system (for a review, 
see Kontis & Theochari, 2012). Modeling AN patient data using COVIS could help resolve this controversy and 
thereby refine AN treatment strategies. 

Considerable evidence suggests that creative problem solving improves with brain dopamine levels and the 
tendency to perseverate is reduced (Ashby, Isen, & Turken, 1999). COVIS accounts for these effects via separate 
rule selection and rule switching parameters that change in opposite ways as dopamine levels rise.  Specifically, 
in COVIS, as dopamine levels rise in the anterior cingulate and prefrontal cortex, the � parameter increases, 
which increases the probability that a low-salience rule is selected on any given trial (and via this mechanism, 
creative problem solving is improved). In contrast, the tendency to ignore feedback and perseverate on the current 
rule increases with the � parameter, which is inversely related to levels of striatal dopamine.  Given that set 
shifting has been associated with brain dopamine function (Floresco, Ghods-Sharifi, Vexelman, & Magyar, 2006; 
Kehagia, Barker, & Robbins, 2010) and that the pathophysiology of AN may involve dopamine alterations (e.g., 
Frank et al., 2005; Kaye, et al.,, 1999; and as discussed above), it is possible that alterations in set-shifting in AN 
represent changes to the dopamine system.  In regard to this latter point, and as noted earlier, COVIS has been 
successful in simulating the set shifting deficits observed in patients with Parkinson's disease who have noted 
depletions in dopamine levels (Hélie et al., 2012a, 2012b). 

Based on previous work, we predicted that the weight-restored AN participants would demonstrate impaired 
set shifting abilities in that once the rule shifts, they would continue to perseverate on the previous rule.  Further, 
based on the notion that AN patients experience alterations in responding to negative feedback and dopamine 
systems, we anticipated that systematic manipulations of specific parameters of COVIS would provide a good 
accounting of the AN’s performance on the set-shifting task.   
 
 

Method 
 
Participants 
 

Nineteen AN-WR women and 35 control women (CW) participated in this study. Participants in the AN-WR 
group were recruited through the University of California San Diego Eating Disorders program.  Participants with 
AN-WR previously met DSM-IV-TR (APA, 2000) criteria for anorexia nervosa; 12 with restricting subtype, 5 with 
purging subtype, and 2 with binging subtype.  To be considered weight-restored, an AN-WR participants had to 
have maintained 90% of their ideal body weight for at least one year.  AN-WR participants also had to have 
regular menstrual cycles, not use psychoactive medication, or engage in abnormal eating behaviors (e.g., 
restricting patterns) for at least one year.  CW participants were recruited through local advertisements in the San 
Diego (n=19) and Denver (n=16) metropolitan areas.  The two CW groups did not differ in demographics.  CW 
participants had a lifetime history of body weight between 90% and 110% of ideal body weight since menarche, 
and had no history of psychiatric or major medical illness.  A doctoral level clinician assessed AN-WR and CW 
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participants with the Structured Clinical Interview for DSM-IV Axis I Disorders (First, Gibbon, Spitzer, & Williams, 
1996).  Five AN-WR participants had comorbid Major Depressive Disorder and one had a comorbid anxiety 
disorder; no individuals had a psychotic, substance use or bipolar disorder. The results reported below were 
reanalyzed after first removing those AN-WR participants with comorbid depression and then removing the AN-
WR participant with comorbid anxiety and the pattern of the results did not differ as compared to when the entire 
sample was included.  Study participants completed the Temperament Character Inventory (Cloninger, Przybeck, 
Svrakic, & Wetzel, 1994) and the Eating Disorder Inventory – 2 (EDI-2; Garner, 1991) at the time of this study.  

Table 1 displays the means and standard deviations of participants age at the time of study, age at illness 
onset, age when weight was restored to normal, duration of low weight, duration weight had been restored to 
normal, current body mass index (BMI), lowest BMI, difference between lowest and current BMI, and scores on 
selected subscales of the TCI and EDI-2 for the all participants in the AN-WR and CW groups (when applicable).  
Written informed consent was obtained for each participant after a complete description of the study procedures 
was provided. The local Institutional Review Boards approved all research procedures.   
 
 
Stimuli 
 

The category learning task was adapted from that used by Filoteo and colleagues to study explicit category 
learning and set-shifting in patients with basal ganglia disorders (Filoteo, Maddox, Ing, Zizak, & Song, 2005).  Two 
different sets of computer-generated stimuli were presented consisting of color images of either cartoon "castles" 
or "houses".  Examples of stimuli from each of the two sets are shown in Figure 1.  For each set, four possible 
binary-valued dimensions could vary from trial-to-trial.  These four dimensions and the binary values for each 
stimulus set were the following:  castle stimuli - shape of foundation (diamond or square), location of ramparts 
(above walls or sunken into walls), number of rings surrounding castle (1 or 2), color of drawbridge (yellow or 
green); house stimuli - color of door (blue or red), lighting inside window (lights off or lights on), shape of roof (flat 
or triangular), nature of plants (shrub or tree).  Each stimulus was presented in color that remained constant 
except for the altered dimension that was relevant to the categorization task described above.  Each stimulus was 
approximately 10 cm in height and from a viewing distance of approximately 60 cm subtended about 9.6 degrees 
of visual angle. 
 
 
Procedure 
 

Each participant was randomly administered one set of stimuli (houses or castles).  Participants were told that 
they would be shown individual pictures and asked to categorize each as either belonging to Category 1 or 
Category 2 by pressing a specified key.  Participants were also told that after they categorized the picture, they 
would receive feedback on the computer screen in the form of the word “Correct” for correct responses and the 
word “Wrong” for incorrect responses. Participants were also told that they would be guessing at first and that they 
should attempt to learn from their errors. For each set of stimuli, four dimensions would vary on a trial-by-trial 
basis.  The task of the participant was to determine the relevant dimension based on the corrective feedback.  
Participants were presented a total of 160 trials in 8 blocks:  80 pre rule-shift trials and 80 post rule-shift trials.  For 
the castle stimuli, the relevant dimension prior to the rule-shift was the shape of the foundation (Category 1 = 
square shape, Category 2 = diamond shape), and the relevant dimension after the rule-shift was the number of 
rings around the castle (Category 1 = one ring, Category 2 = two rings).  For the house stimuli, the relevant 
dimension prior to the rule-shift was the shape of the roof (Category 1 = flat, Category 2 = triangular), and the 
relevant dimension after the rule-shift was the nature of the plants (Category 1 = tree, Category 2 = bush).  
Participants were never informed that a rule-shift was going to occur and thus had to infer it based on the 
corrective feedback. 

Each trial began with the presentation of a picture that remained on the screen until the participant made a 
categorization response.  Immediately following a response, correct or incorrect feedback was presented for 0.75 
sec while the stimulus remained on the screen, followed by a blank screen for 1.0 sec, and then the presentation 
of the next stimulus.   
 
 
Statistical Analysis of Behavioral Data 
 

Demographic and clinical variables were compared using independent sample t-tests.  Accuracy 
performances (proportion correct) on the category learning task were examined using group × block, mixed-
design ANOVAs.  To determine initial rule acquisition, a Learning Slope index was computed for each participant 
by subtracting the proportion correct on block 1 from the proportion correct on block 4 (greater slopes equaled 
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greater rule acquisition).  To determine the impact of the rule shift, a Shift Cost score was computed by 
subtracting each participant's proportion correct on block 5 from their proportion correct on block 4 (greater scores 
equaled a greater shift-cost). The Learning Slope and Shift Cost scores for the patient and control groups were 
then compared using independent sample t-tests. Correlation analyses were conducted using Pearson's 
correlation analysis.  All statistical tests were two-tailed and considered reliable at the p < .05 level. We did not 
correct for multiple ANOVA tests because each analyses addressed separate a priori questions and ANOVA 
generally tends to protect from Type I error.  Effect sizes are reported as either Cohen’s d or partial eta squared 
p

2. 
 
COVIS Simulations 
 

The computational implementation of COVIS employed here is described fully by Ashby et al. (2011). To 
simulate the observed behavioral performance, COVIS parameters were adjusted systematically between groups 
and with respect to the theoretically motivated contribution of each parameter. As explained earlier, three 
parameters potentially relevant to AN patients were manipulated to account for differences between AN and CW 
participants: the perseveration parameter  (hypothesized to be inversely related to striatal dopamine levels), the 
selection parameter  (directly related to cortical dopamine levels), and e, which measures sensitivity to error 
feedback.  In the following simulations,  was larger for AN simulations than control simulations, while  was larger 
for control than AN simulations. This relationship reflects the hypothesized role of dopamine deficiency in AN with 
respect to COVIS. Finally, e was larger for AN than control simulations, in line with the observation that AN 
patients are more sensitive to punishment.  

The parameters were constrained to an ordinal relationship across participant populations with respect to the 
presumed dopamine-related effects of AN. All parameters in the model were initially estimated by fitting the model 
to data from the CW group, and only the parameters described above were modified to fit data from the AN-WR 
group. None of the parameter estimates were optimized; reasonable values were assigned using a rough grid 
search. 

Two hundred simulations were run for each control and AN-WR participant in the set-shifting task described 
above. As in prior applications of COVIS, the procedural system received an object-based representation of the 
stimuli as a 16-dimensional binary vector: for stimulus i, the vector had a value of 1 in position i and a value of 0 
otherwise. The hypothesis-testing system received a feature-based representation of the stimuli as a four-
dimensional binary vector: for each stimulus, the entry in row j corresponding to feature j (e.g., door) was set to 1 if 
it had one value (e.g., blue) and 0 if it had the other (e.g., red).  

 
 

Results 
 

Demographic, TCI-2, and EDI-2 Comparisons 
 

Demographic and disease characteristics are displayed in Table 1. The mean age of the AN-WR and CW 
groups did not differ nor did their BMI.  On the TCI-2, the AN group reported greater scores on the Harm 
Avoidance and Persistence subscales than the CW group indicating that the AN-WR group was more harm 
avoidant and persistent in their personalities.  The two groups differed significantly on all of the EDI-2 subscales 
examined indicating that, compared to the CW group, the AN group had greater drive for thinness, bulimia 
symptoms, body dissatisfaction, feelings of ineffectiveness, and perfectionistic tendencies. 

 
 
Behavioral Accuracy Results  
 

Accuracy results (proportion correct) across the 160 trials in 8 trial blocks are depicted in Figure 2.  The 
groups were contrasted separately on blocks 1-4 (pre-shift blocks) and blocks 5-8 (post-shift blocks) using two 
separate 2 (group) × 4 (block) ANOVAs to determine if there were any differences between the groups in rule 
learning (blocks 1-4) and set shifting (blocks 5-8), respectively.  The results for blocks 1-4 revealed a group x 
block interaction, F(3,156)=5.49, p=0.001, p

2=0.096, such that the AN group demonstrated greater learning 
across the four blocks than the CW group (see Figure 2).  The ANOVA also revealed an effect of block, 
F(3,156)=11.13, p<0.001, p

2=0.176, but no effect of group, F(1,52)=0.69, p=0.41, p
2=0.013.  The significant 

group X block interaction observed in blocks 1-4 was further supported by an examination of the two groups’ 
Learning Slopes.  The mean Learning Slope for the AN-WR group was 31.8 (SD=15.4) and for the CW group it 
was 16.1 (SD=22.3), and these were significantly different, t(52)=2.73, p=0.009, p

2=0.125.   
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The results for the 2 X 4 ANOVA for blocks 5-8 revealed an effect of group, F(1,52)=4.66, p=0.036, p
2=0.082, 

and block, F(3,156)=9.98, p<0.001, p
2=0.161, but no group × block interaction, F(3,156)=0.51, p=0.68, 

p
2=0.010. To examine the cost in accuracy following the rule shift, a 2 (group) × 2 (block) ANOVA was used to 

contrast the groups’ accuracies in block 4 vs. block 5.  The results for this analysis revealed a significant group × 
block interaction, F(1,52)=4.17, p=0.046, p

2=0.074, and a significant effect of block, F(1,52)=55.32, p<0.001, 

p
2=0.515, but no effect of group, F(1,52)=0.02, p=0.89, p

2=0.000.  We next contrasted the mean Shift-Cost for 
the AN group (32.6, SD=22.3) and for the CW group (18.6, SD=25.0) and these means were significantly different, 
t(52)=2.04, p=0.046, p

2=0.074.   
An examination of Figure 2 suggests that one possible reason the AN group displayed a greater Shift-Cost 

than the CW group was that they learned the rule prior to the shift to a greater extent, thereby making it more 
difficult to shift once the rule changed.  That is, it could have been that the AN-WR participants became “locked in 
set” prior to the rule change by virtue of their initial hyper learning.  To test this hypothesis, we correlated 
participants’ Learning Slope and Shift Cost and found that these did not correlate in the AN-WR group (r(19)=0.10, 
p=0.67) but there was a trend for an association in the CW group (r(35)=0.33, p=0.057).   

 
 
Clinical Correlates 
 

We next examined clinical correlations between the task variables and the clinical variables in the AN-WR and 
CW groups.  These correlations are shown in Table 2.  For the AN-WR group, a lower duration of weight 
restoration and a lower change in BMI was associated with a greater, more abnormal Learning Slope value (i.e., 
hyper-learning), and greater scores on the Harm Avoidance subscale of the TCI was associated with a greater, 
more abnormal Learning Slope.  There were no significant associations between any of the demographic or 
clinical variables and Shift Cost for the AN-WR group.  For the CW group, older age was associated with a greater 
Learning Slope (faster learning), but no other variables, and Shift Cost was not associated with any of these 
variables.   

 
 
Simulation Results 
 

The exact parameter values for each participant group appear in Tables 3 and 4. Note that only the three 
parameters described earlier were adjusted to simulate the behavioral performance of the AN-WR and CW 
participants—the remaining parameters required for the model were set to identical values across both groups, 
and are described elsewhere (Ashby et al., 2011; Hélie et al., 2012a, 2012b).  

Figure 3 shows the simulated performance of the model in the behavioral task. Note that the absence of error 
bars is for two reasons: first, the error bars can be made arbitrarily small by increasing the number of simulations; 
second, COVIS does not specifically model individual variability in task performance. For the simulated adults, 
AN-CW patients learn faster in the first four blocks due to the higher sensitivity to negative feedback and the 
model also captures the greater switch cost (block 4 – block 5 accuracy) for the AN group. Post-switch, the 
simulated control group ends at a higher accuracy than the AN group due to the perseverative tendency of the AN 
group. Overall, COVIS closely matches the human performance data suggesting dopamine-decreases may, at 
least in part, underlie the cognitive deficits observed in this task. 

To evaluate the robustness of the simulated performance to changes in the parameters, a sensitivity analysis 
(Hélie et al., 2012a, 2012b) was carried out. Briefly, the value of each parameter used to fit the behavioral data 
was adjusted ±10% and then ±95% in turn for an additional 200 simulations for each parameter change. Next, for 
each change, new predictions were generated and the average difference between the Figure 3 predictions and 
the new predictions was quantified by calculating the mean root squared error (MRSE). Across all simulated 
groups and every parameter, this analysis yielded an overall MRSE of only 2.46% when the parameters were 
changed by ±10%, and an MRSE of 5.66% when the parameters were changed by ±95%. These small MRSEs 
show that the model tends to make highly similar predictions even when the parameters change substantially. For 
this reason, we can be confident that an optimized parameter estimation process would not significantly alter the 
model’s predictions, relative to the course grid search that we used.  

COVIS is insensitive to small changes in parameter values because the model is richer in structure than more 
typical purely cognitive models. For example, in the present application COVIS assumes that participants always 
experiment with only four simple explicit rules – namely, the one-dimensional rules on each of the four stimulus 
dimensions. Thus, no matter how the parameters are changed the model always predicts that one of these four 
strategies must be applied on every trial. Changing the parameters simply changes the probabilities that each of 
the four rules is selected. This can change the predictions of the model quantitatively, but it cannot change them 
qualitatively. In contrast, consider a purely cognitive model of categorization such as the exemplar-based, 
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generalized context model (GCM; Nosofsky, 1986). By manipulating its (attention weight) parameters, the GCM 
can mimic any of the four rule strategies assumed by COVIS, but it can also mimic many more complex decision 
strategies that integrate information from multiple dimensions. Thus, in contrast to COVIS, changing the GCM 
parameters can change the qualitative predictions of the model as well as the quantitative predictions.  

This same sensitivity analysis also allowed us to ascertain that the the rule selection parameter (i.e., ; 
hypothesized to be directly related to cortical DA levels) accounts for the most variability in the model’s 
performance. For example, the variance of the MRSEs that result when each parameter is changed by ±95% was 
40.8 for the selection parameter, 9.0 for the perseveration parameter (i.e., ), and 1.3 for the sensitivity-to-error-
feedback parameter (i.e., e). This result is important because it allows us to pinpoint what micro-process 
accounts for the performance difference between restored AN and CW. Specifically, the COVIS simulations 
suggest that recovered AN do not necessarily have a deficit in disengaging from an unsuccessful response 
strategy, but instead the deficit may be caused by a difficulty in selecting a new strategy to replace the old 
(unsuccessful) strategy. This difficulty in selecting a new strategy may be related to AN’s perfectionist personality 
(Casper et al., 1992; Merwin et al, 2011), as AN may be worried about selecting an even worse strategy, and 
receiving more negative feedback (i.e., the next strategy needs to be the correct one). Future work is needed to 
specifically test for this new hypothesis. 

 
 

Discussion 
 

A main finding from the present study is that, compared to CW participants, AN-WR participants were 
impaired in set shifting.  These results are consistent with previous studies demonstrating a set shifting deficit in 
patients both currently ill with an eating disorder (Roberts et al., 2007; Roberts et al., 2010; Shott et al., 2012; 
Steinglass et al., 2006; Tchanturia et al., 2002) and following weight restoration (Danner et al., 2012; Roberts et 
al., 2010; Tchanturia et al., 2002; Tenconi et al., 2010). 

A novel behavioral finding in the current study was that the AN-WR group demonstrated hyper learning during 
the initial rule acquisition stage prior to the rule shift.  This finding is consistent with previous studies showing that 
AN patients are better at focusing on the detailed aspects of visual information (Lopez, Tchanturia, Stahl, & 
Treasure, 2009; Southgate, Tchanturia, & Treasure, 2008) which is an important aspect of rule-based learning 
(Ashby et al., 1998).  That is, during the first stage of the category learning task the participant had to identify one 
stimulus dimension and ignore the other, irrelevant dimensions to acquire the rule.  If AN-WR participants are 
better able to focus on details of visual objects at the cost of the overall gestalt (often described as a deficit in 
central coherence) they could likely learn the rule better than CW participants.  However, when the rule changes, 
AN-WR groups’ deficit in rule shifting manifests and they are unable to learn the new rule.  This explanation of our 
findings proposes that two separate mechanisms are responsible for the hyper learning and set shifting deficits 
observed in the present study, which is highly consistent with our finding of a lack of a correlation between AN-WR 
participants’ Learning Slope and Set Shift Cost values.  

The results from the model simulations are also consistent with the notion that two distinct mechanisms 
underlie AN-WR participants’ hyper learning and set shifting deficits.  Specifically, increasing the value of the 
parameter e, which measures sensitivity to error feedback, resulted in hyper learning during the initial stages of 
rule acquisition but had no impact on the ability of the model to simulate AN-WR participants’ set shifting deficit.  
In contrast, increasing the perseveration parameter , which is hypothesized to be inversely related to striatal 
dopamine levels, and decreasing the selection parameter , which is thought to be directly related to cortical 
dopamine levels, resulted in an increase in perseverations that simulated the behavioral set shifting deficit 
observed in the AN group (see Figure 3).  As such, COVIS provided a good accounting of all aspects of the 
results observed in the AN group and the model suggests that different mechanisms underlie the two behavioral 
findings.  Of note, the parameters that were manipulated were not selected arbitrarily and were based on our 
understanding of both the behavioral and neurobiological findings in AN.  That is, AN patients are more sensitive 
to negative feedback than control participants (Harrison et al., 2010; Harrison, Treasure, & Smillie, 2011; Jappe et 
al., 2011) and this sensitivity to punishment has been linked with abnormal eating behaviors in non-clinical 
samples (Loxton & Dawe, 2006).  As for those parameters thought to be sensitive to the integrity of dopamine 
levels ( and ), these were selected given previous studies showing increased dopamine binding using PET 
imaging (indicative of decreased dopamine levels) in the ventral striatum in weight restored AN patients (Bailer et 
al., 2013; Frank et al., 2005).  Taken together, the simulation results are very promising in terms of helping to 
better pinpoint the nature of set shifting performance in AN-WR individuals and to help support the hypothesis that 
alterations in striatal dopamine may be the underlying neurobiological substrate for set shifting deficits in these 
patients.  Of course, more direct neurobiological data will be needed to help further support this possibility. 

We also examined the clinical correlates of AN patients’ hyper learning and set shifting deficit by correlating 
participants’ Learning Slope and Set Shift Cost values with their clinical variables and scores on selected TCI-2 
and ED-2 subscales.  Interestingly the results of these correlations also suggest that hyper learning and set 
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shifting deficits in the AN-WR group are due to distinct mechanisms.  Specifically, a shorter duration of weight 
restoration was associated with a greater, more abnormal learning slope, as was a smaller change in BMI 
between lowest and current BMI.  These findings indicate that recovery status may be associated with hyper 
learning in AN-WR individuals.  However, it was also the case that greater scores on the Harm Avoidance 
subscale of the TCI-2 was associated with a larger, more abnormal learning slope.  One of the features of 
individuals who obtain high scores on the Harm Avoidant subscale is that they tend to be highly sensitive to 
criticism and punishment, suggesting that this personality feature might underlie the hyper learning observed in 
our sample of AN-WR participants.  This is highly consistent with the results of the modeling analyses and further 
indicates the utility of our modeling approach in providing converging evidence as to the mechanisms underling 
our behavioral findings.   

In contrast to the findings with the Learning Slope, the Shift Cost index was not associated with any of the 
clinical variables or subscales from the TCI-2 or EDI-2.  This is consistent with previous studies that also did not 
find significant associations in currently ill AN patients between set shifting and BMI and disease duration (Shott et 
al., 2012; Tchanturia et al., 2011) or between set shifting and subscales of the TCI-2 or ED-2 (Shott et al., 2012).  
These results are important and raise two important issues in AN research.  First, given that the various BMI and 
disease duration variables are not associated with set shifting deficits in the current study, it appears that disease 
severity does not necessarily account for the set shifting deficit in our AN-WR sample.  If so, then our findings may 
not be attributable to the neurological impact of the acute stages of AN or possibly any long-lasting effects of the 
disease but may reflect cognitive traits of AN seen in adulthood. 

The other important issue raised by the lack of correlations among the Shift Cost indices and the clinical 
measures is whether there is any clinical utility to identifying set shifting deficits in AN-WR individuals.  That is, if 
the personality characteristics that are thought to be the hallmark of AN are not associated with set shifting in AN, 
how meaningful is this cognitive alteration.  For example, AN patients are often rigid, perfectionistic, and harm 
avoidant  (Bastiani, Rao, Weltzin, & Kaye, 1995; Friederich & Herzog, 2011) and these characteristics can persist 
after weight restoration (Klump et al., 2004) and can predict important treatment variables such as response and 
drop out  (Fassino et al., 2005; Pham-Scottez et al., 2012).  The lack of an association between set shifting 
deficits and these characteristics (as measured by the TCI) in weight restored AN participants and currently ill AN 
patients (Shott et al., 2012) highlights this concern.  Thus, while the finding of a set shifting deficit in AN is 
interesting from a cognitive neuropsychiatric perspective, the clinical utility of this cognitive characteristic awaits 
further research.  More work is clearly needed to determine if hyper learning and/or set shifting deficits are 
predictive of important disease and treatment variables such as disease severity, treatment participation, 
treatment outcome, and relapse, to name a few.  However, the finding that AN-WR participants demonstrate both 
hyper learning and set shifting deficits, that these two abnormal behaviors are not associated, that the clinical 
correlates of these behaviors differ, and that these two behaviors are simulated with different model parameters in 
COVIS, provides great encouragement as to the possible clinical utility of identifying either hyper learning or set 
shifting deficits in individuals with AN.  

There are two important limitations to the study that should be addressed.  First, the small sample size is one 
limitation making it difficult to generalize our findings to all weight-restored AN individulas.  However, the 
observation of a set shifting deficit in AN (both currently ill and weight restored) is one of the most consistent 
findings in eating disorders research, which strengthens our contention that our current findings are reliable and 
generalizable.  In contrast, the observation of hyper learning in our AN sample is a novel finding that will require 
replication in larger samples.  Second, the design of the study was cross sectional making it difficult to determine 
the evolution of hyper learning and set shifting deficits in AN and the contribution of these cognitive characteristics 
to developing the disease.  That is, based on the present study we cannot determine whether hyper learning or 
the set shifting deficits contribute to the development of AN or are a result of the disease. Of note, in a recent 
study we found that currently ill adolescents with AN did not demonstrate hyper learning or set shifting deficits on 
the same task as the one used in the current study (Shott et al., 2012), suggesting that set shifting deficits may not 
necessarily contribute to the onset of AN.  However, it is still not clear whether set shifting deficits are entirely 
normal in adolescents with AN so it currently cannot be concluded that hyper learning or set shifting deficits do not 
contribute to the development of AN. 

In summary, the current study identified a set shifting deficit in weight restored AN patients, a finding highly 
consistent with previous work.  In addition, AN-WR participants demonstrated hyper learning compared to CW 
participants, which has not been reported previously.  Both of these findings were accurately simulated by COVIS, 
a biologically plausible model of category learning and set shifting, by manipulating model parameters that 
represent sensitivity to punishment and dopamine functioning, neural processes known to be impacted in AN.  
The clinical utility of these findings awaits further study but the results of this study provide great promise for the 
use of computational modeling in better understanding neuropsychological functioning in AN. 
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Appendix: The COVIS Explicit System 
 

COVIS assumes that when learning about new categories, people initially rely almost exclusively on their 
explicit system. In information-integration tasks, the explicit system fails to find the optimal strategy, so COVIS 
predicts that under these conditions, control is gradually passed to the procedural system. In rule-based tasks 
however, the explicit system succeeds in finding the optimal strategy, so COVIS predicts that the procedural 
system contributes almost nothing in rule-based tasks. Because the tasks used in this article are rule-based, this 
appendix only describes the COVIS explicit system. For a detailed description of the procedural system, and the 
system switching algorithm, see Ashby et al. (2011).  

In the present application, the COVIS explicit system investigates four possible explicit rules – one-
dimensional rules on each of the four stimulus dimensions. Denote the set of these four rules by R = {R1, R2, R3, 
R4}. On each trial, the model selects one of these rules for application by following the algorithm described below. 
Denote the coordinates of each stimulus on the 4 dimensions by x = (x1, x2, x3, x4). Since the dimensions are 
binary, each xi = +1 or -1. On trials when the active rule is Ri, a response is selected by using the following 
decision rule:  

 
Respond A on trial n if xi < ε; respond B if xi > ε, 

 

where ε is a normally distributed random variable with mean 0 and variance 2
E . The variance 2

E  increases with 

trial-by-trial variability in the subject’s perception of the stimulus and memory of the decision criterion (i.e., 
perceptual and criterial noise).  

Suppose rule Ri is used on trial n. Then the rule selection process proceeds as follows. If the response on trial 
n is correct, then rule Ri is used again on trial n + 1 with probability 1. If the response on trial n is incorrect, then 
the probability of selecting each rule in the set R for use on trial n + 1 is a function of that rule’s current weight. 
The weight associated with each rule is a function of initial bias, the reward history associated with that rule during 
the current categorization training session, the tendency of the participant to perseverate, and the tendency of the 
participant to select unusual or creative rules. These factors are all formalized in the following way. 

Let Zk(n) denote the salience of rule Rk on trial n. Therefore, Zk(0) is the initial salience of rule Rk, which in the 
present applications were all set equal. The salience of each rule is adjusted after every trial on which it is used, in 
a manner that depends on whether or not the rule is successful. For example, if rule Rk is used on trial n – 1 and a 
correct response occurred, then  

 
Zk(n) = Zk(n – 1) + C, 

 
where C is some positive constant. If rule Rk is used on trial n – 1 and an error occurs, then  
 

Zk(n) = Zk(n – 1) – E, 
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where E is also a positive constant. The numerical value of C depends on the perceived gain associated with a 
correct response and E depends on the perceived cost of an error. 

The salience of each rule is then adjusted to produce a weight, Y, according to the following rules. 
1) For the rule Ri that was active on trial n,  

 
Yi(n) = Zi(n) + , 

 
where the constant  is a measure of the tendency of the participant to perseverate on the active rule, even 
though feedback indicates that this rule is incorrect (e.g., if  is small, then switching will be easy, whereas 
switching is difficult if  is large). 

2) Choose a rule at random from R. Call this rule Rj. The weight for this rule is 
 

Yj(n) = Zj(n) + X, 
 

where X is a random variable that has a Poisson distribution with mean λ. Larger values of λ increase the 
probability that rule Rj will be selected for the next trial, so λ is called the selection parameter. 

3) For any other rule Rk (i.e., Rk ≠ Ri or Rj), 
 

Yk(n) = Zk(n). 
 

Finally, rule Rk (for all k) is selected for use on trial n + 1 with probability 
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Table 1.  Demographic and clinical information for AN-WR and CW groups. 

 
 

 AN-WR (n=19) CW (n=35) d 
 M SD M SD  

Age at Study (years) 29.7 6.6 27.7 5.1 0.34 
Age at Illness Onset (years) 14.5 2.6 --- --- --- 
Age Weight Restored (years) 23.3 5.4 --- --- --- 
Duration Low Weight (years) 8.8 6.5 --- --- --- 
Duration Weight Restored (years) 6.5 6.5 --- --- --- 
Current Body Mass Index (kg/m2) 21.2 1.3 21.9 1.7 0.46 
Lowest Body Mass Index (kg/m2) 14.9 2.8 --- --- --- 
Change in Body Mass Index (kg/ 
m2) 

6.3 3.1 --- --- --- 

      
TCI      

Novelty Seeking 17.0 6.3 19.9 5.6 0.24 
Harm Avoidance 13.7** 7.2 8.4 3.6 1.03 
Reward Dependence 16.7 4.4 18.1 3.0 0.37 
Persistence 6.4** 2.0 4.8 1.8 0.84 

      
EDI-2      

Drive for Thinness 11.6** 8.0 0.8 1.8 1.86 
Bulimia 2.0** 2.1 0.2 0.9 1.11 
Body Dissatisfaction 14.3** 8.5 1.8 3.1 1.95 
Ineffectiveness 9.2** 9.7 0.3 0.9 1.30 
Perfectionism 8.0** 4.8 3.6 3.2 1.08 

 
Notes:  TCI = Temperament and Character Inventory subscales; EDI‐2 = Eating Disorder Inventory‐2 subscales  
* p value <0.05, ** p value <0.01 
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Table 2.  Demographic and clinical correlates of Learning Slope and Shift Cost values for the AN-WR and CW 
groups.  Values are Pearson correlations and 95% confidence intervals are in parentheses. 
 
 
 AN-WR (n=19) CW (n=35) 
 Learning Slope Shift Cost Learning Slope Shift Cost 

Age at Study (years) 
-.14 

(-.56-.34) 
-.16 

(-.57-.32) 
.36* 

(.03-.62) 
-.17 

(-.17-.48) 

Age at Illness Onset (years) 
.09 

(-.38-.52) 
.12 

(-.35-.54) 
--- --- 

Age Weight Restored (years) 
.34 

(-.14-.69) 
-.18 

(-.59-.30) 
--- --- 

Duration Low Weight (years) 
.25 

(-.23-.63) 
-.20 

(-.60-.28) 
--- --- 

Duration Weight Restored (years) 
-.49*

(.05-.77) 
-.03 

(-.48-.43) 
--- --- 

Current Body Mass Index (kg/m2) 
-.31 

(-.67-.17) 
.25 

(-.23-.63) 
-.04 

(-.30-.37) 
-.22 

(-.52-.12) 

Lowest Body Mass Index (kg/m2) 
.43 

(-.03-.74) 
-.10 

(-.53-.37) 
--- --- 

Change in Body Mass Index (kg/ 
m2) 

-.52* 
(-.79- -.09) 

.20 
(-.28-.60) 

--- --- 

     
TCI-2     

Novelty Seeking 
.10 

(-.37-.53) 
.11 

(-.36-.54) 
-.15 

(-.46-.19) 
.06 

(-.28-.39) 

Harm Avoidance 
.61** 

(.23-.84) 
.17 

(-.31-.58) 
-.27 

(-.55-.07) 
-.23 

Reward Dependence 
-.06 

(-.50-.41) 
-.15 

(-.57-.33) 
-.01 

(-.34-.32) 
.26 

(-.08-.55) 

Persistence 
.16 

(-.32-.57) 
-.10 

(-.53-.37) 
.20 

(-.14-.50) 
.13 

(-.21-.44) 
     
EDI-2     

Drive for Thinness 
.07 

(-.40-.51) 
.09 

(-.38-.52) 
-.07 

(-.39-.27) 
.07 

(-.27-.39) 

Bulimia 
.16 

(-.32-.57) 
.00 

(-.45-45) 
-.07 

(-.39-.27) 
.23 

(-.11-.52) 

Body Dissatisfaction 
.18 

(-.30-.59) 
-.01 

(-.46-.45) 
.03 

(-.31-.36) 
.14 

(-.20-.45) 

Ineffectiveness 
.13 

(-.34-.55) 
.09 

(-.38-.52) 
-.10 

(-.42-.24) 
.15 

(-.19-.46) 

Perfectionism 
.04 

(-.42-.49) 
.31 

(-.17-.67) 
.05 

(-.29-.38) 
.17 

(-.17-.48) 
 
Notes:  TCI = Temperament and Character Inventory subscales; EDI‐2 = Eating Disorder Inventory‐2 subscales  
* p value <0.05 
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Table 3. 

Simulation-related parameters in COVIS 

Parameters Adult AN Adult CW 

e 1.75 0.001 

 0.8 0.1 

 1.5 3.9 

   

 

Table 4. 

Other COVIS parameters 

Parameters AN CW 

c 0.5 - 

 0.8 - 

2
E  0.2 - 

ΘAMPA 0.001 - 

ΘNMDA 0.002 - 

Dslope 0.8 - 

Dbase 0.2 - 

Dmax 1 - 

w 0.4 - 

w 0.19 - 

w 0.02 - 

σp 0.0125 - 

Oc 0.004 - 

Oe 0.0075 - 

Note. See Ashby et al., 2011 and Hélie et al., 2012a, for a full description of COVIS and its parameters. 
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Figure 1.  Example of the category learning task which presents two different sets of computer-generated stimuli of either a 
cartoon castle or house. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2.  Accuracy (proportion correct) for AN and CW groups.  (error bars are standard error of the mean).  
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Figure 3.  Simulated accuracy (proportion correct) for AN and CW groups.  
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